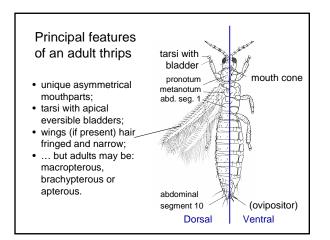
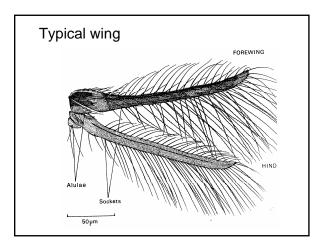
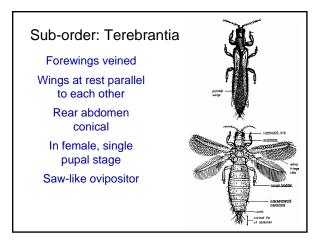
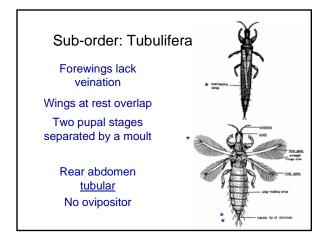

Major features of Thysanoptera

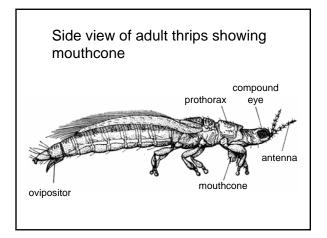

- Name comes from the Greek for fringed wings. Also known as 'thunderflies' or 'stormflies'
- Adults 0.5-15mm but temperate species rarely >2mm
- About 5,000 described species.
- Widely distributed in Latitudes between 60N and 45S.
- Usually both genders, but females predominate. Males are haploid.
 Some species are wholly parthenogenetic (or the males are unknown).

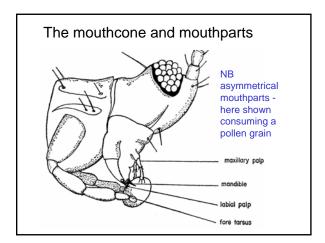

More basic facts about thrips:

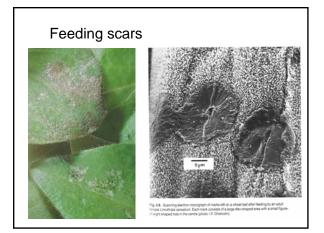
- Piercing/sucking mouthparts. Most feed on vascular plants, but some on fungi or mosses. Often seen on flower heads. Some species are predatory.
- Some thrips are pests of a wide range of crops e.g. cereals, vegetables, flowers, cotton, citrus etc. Damage is direct to flowers, fruit and leaves, also indirect by virus transmission e.g. Tomato spotted wilt virus (TSWV)
- Some thrips are beneficial as pollinators and as natural enemies of mites, scales and pest thrips. Some are also useful for weed control.

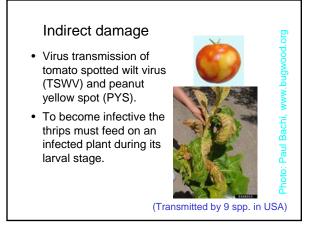






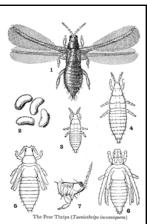

Terebrantia	Tubulifera
Seven families, two are of economic importance - the Aeolothripidae and Thripidae	One family, the Phlaeothripidae (includes pest and natural enemy spp.)

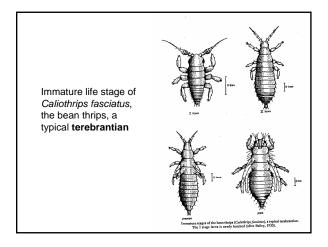

Sub order	family	No of species	(UK)	Comment
Terebrantia	Uzelothripidae	1	0	
	Merothripidae	15	0	Neotropical fungal feeders
	Aeolothripidae	260	13	Mainly temperate, flower-living predators
	Adiheterothripidae	e 5	0	
	Fauriellidae	4	0	
	Heterothripidae	70	0	New World
	Thripidae	1700	107	
Tubulifera	Phlaeothripidae	3000	39	

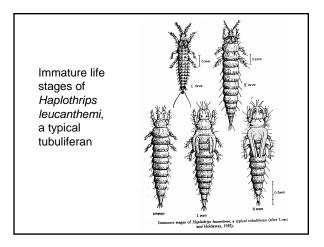


Feeding by thrips

- Mouthparts form a cone attached to underside of head and directed downwards beneath the first thoracic segment. Uniquely asymmetrical with a single piercing mandible and two maxillary stylets forming feeding tube.
- Cell contents (including pollen & chloroplasts) ingested whole, thrips can consume 12% of their body weight per hour.
- Feeding sites on plants: leaves, flowers, florets and seeds.
- Direct damage: probing and feeding removes surface waxes, epidermal cells collapse and mesophyll cells are destroyed. Tissues then develop a silvery sheen and areas coalesce and wrinkle.




Biology and Ecology


- Haploid males develop from unfertilised eggs. Females predominate especially in glasshouses where populations may be entirely parthenogenetic.
- Females produce 30-300 eggs, which are either surface deposited or embedded in plant tissue
- Life cycle can last from 10 days to 1 year depending on the temperature. In temperate regions 1-2 generations per year. Over-wintering life stage (egg, pupa, adult) depends on species. 12-15 generations per year in warmer climates where the peak populations can exceed 10 Million individuals per Hectare.
- Weak fliers (10-50 cm/s) but can be windblown to disperse > 100km.

Thysanoptera: Hemimetabolous development

- Life cycle evolution: intermediate between incomplete & complete metamorphosis: egg, 2 actively feeding 'larval' instars, pre-pupa, pupa, adult.
- Hemimetabolous nymphs, but the term 'larva' is used.
- Many terebrantians move to soil to pupate, many tubuliferans remain on host plant.

Adaptive forms in thrips a) b) c) d) e) f) g)

- Podothrips grass dweller Selenothrips foliage
 - feeder Arachisothrips peanut-
 - winged thrips
 - Franklinothrips fastrunning predator
 - Hoplothrips flattened crevice dweller
 - Leptogastrothrips ant mimic
 - Kladothrips bubble leafgall thrips

Thysanopteran pests

- Piercing/scraping outer plant cells
- Especially cosmetic damage to high value horticultural crops
- In UK, Kakothrips robustus responsible for mottled silvery pea pods

Som	Some major pest thrips				
Family	Genus	Example	Major hosts		
Thripidae	Caliothrips	C. fasciatus – bean thrips	Legumes		
		<i>C. sudanensis</i> – cotton leaf thrips	cotton		
	Heliothrips	<i>H. haemorrhoidalis</i> – black tea or Greenhouse thrips	Polyphagous		
	Hercinothrips	<i>H. bicinctus</i> banana thrips	Bananas & glasshouses		
	Scirtothrips	Citrus thrips <i>S. aurantii,</i> <i>S. citri, S.dorsalis</i>	Citrus		
	Limothrips	<i>L. cerealium</i> - grain thrips	Cereals & grasses		

Some more major pest thrips					
Family	Genus	Example	Major hosts		
Thripidae	Frankliniella	F. occidentalis – western flower th	Both v. polyphagous rips		
		<i>F. schulzei</i> - cotton bud thrips			
	Thrips	<i>T. tabaci</i> onion thrips	v. polyphagous, onions, tomatoes		
		<i>T. angusticepss</i> – cabbage thrips	polyphagous, apple, pear, brassicas		
Phlaeothrii	odae	T. palmi	polyphagous, vegetables, ornamentals		
FINAEUUIIII	Gigantothrips	G. elegans	Leaf curl on figs		

Controlling thrips - Cultural methods:

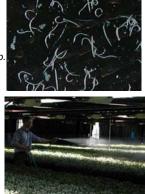
- Irrigate to avoid water stressed plants. NB watering can also physically remove thrips
- Cultivation and burning regimes, crop rotation
- Planting and harvesting times
- Increase plant spacing: when there is a need to to reduce virus incidence
- · Control alternative hosts crop and weed

Controlling thrips - Chemical

- Difficult as they hide in confined spaces
- 'Thripstick' sticky polybutene + deltamethrin (sprayed onto plastic surfaces under cucumber plants against *T. tabaci*)
- Synthetic pyrethroids & neo-nicotinoids may interfere with IPM
- Application ...

Thrips: Biological controls

- Predatory mites: *Amblyseius* (Neoseiulus) cucumeris
- Orius spp. (pirate bugs)
- Lacewing larvae
- Predatory thrips ...


Beneficial thrips

- NATURAL ENEMIES OF PESTS
- Aeolothripidae: Aeolothrips – thrips, mites, moth eggs Franklinothrips – thrips, mites, whitefly
- Thripidae
 - Scolothrips tertranychid mites
- Phlaeothripidae Aleurodothrips Karnyothrips Leptothrips
 - Leptothrips Podothrips
- coccids, scales mites etc

Microbial agents

- Entomopathogenic nematodes: Steinernema feltiae & Heterorhabditis spp.
- Lecanicillium (Verticillium) lecanii

Yellow traps work as well as blue

Used for monitoring to initiate sprays – spot treatment or overall?

Risk of large traps for mass trapping – may encourage invasions from outside

'Thripline': synthetic version of a sexual aggregation pheromone for Westem Flower Thrips, (natural pheromone produced by males and attracts both males and females into mating aggregations)

Pest example: Western Flower thrips, *Frankliniella occidentalis* (Pergande)

- Adults <2mm long, yellow-brown in colour, but several colour forms occur which vary in abundance according to season
- Highly polyphagous species 244 recorded hosts including flowers of apricots, plums, peas, tomatoes, roses, cucurbitaceae, chrysanthemums
- Feeding causes discoloration and scarring of blooms and petals and deformed buds; one of the transmitters tomato spotted wilt virus (TSWV)
- Easily dispersed on wind, clothes, equipment, plants & cut flowers

Western Flower thrips (ctd.)

- In USA glasshouses 12-15 generations per year.
 - Eggs inserted into parenchyma cells of leaves, flowers & buds, hatch 4 days at 27°C,
 - 2 larval stages, pre-pupal & pupal stage. Pupates in soil.
 - >50 eggs per female. 80% female
- Control: phytosanitary measures, quarantine, biocontrols. Chemical control difficult because of cryptic habits & insecticide resistance.

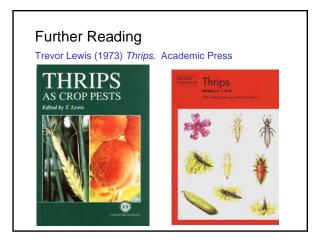
Thrips palmi Invasive species - spreading rapidly

- Invalue species spreading rapidly in tropics and sub-tropics
 Polyphagous pest of Cucurbitacae
- and Solanacae ("melon thrips")
 Kept out of Europe despite a number of outbreaks (UK infestation imported on cut flowers)
 all successfully eradicated
- Mix of IPM measures:
 Space treatments with OP/pyrethroids
 - Imidacloprid (a neo-nicotinoid) NL
 Sanitation with winter break in glasshouses (UK)

See: Cannon *et al.* (2007) *Crop Protection* **26** 1089-1098

Beneficial thrips

- REDUCING FITNESS OF WEEDS
- Liothrips urichi to control Clidemia
- Amynothrips andersoni to control alligator weed in southern USA


• POLLINATION – useful when large insects such as bees are rare

Summary : Thysanoptera

 "Fringed wings" - coupled by tiny hooks on hind wings sometimes called "thunder flies"

Two sub-orders:

- Terebrantia: 7 families including Thripidae
 Tubulifera: 1 family the Phlaeothripidae
- Small, slender, usually dark insects, commonly associated with flowers
- Piercing asymetrical mouthparts
- Pest species often significant <u>cosmetic</u> damage; may transmit viruses
- Beneficial spp. especially pollinators and predators of thrips mites and Sternorrhyncha

